218 lines
7.6 KiB
C++
218 lines
7.6 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkVoxel.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/**
|
|
* @class vtkVoxel
|
|
* @brief a cell that represents a 3D orthogonal parallelepiped
|
|
*
|
|
* vtkVoxel is a concrete implementation of vtkCell to represent a 3D
|
|
* orthogonal parallelepiped. Unlike vtkHexahedron, vtkVoxel has interior
|
|
* angles of 90 degrees, and sides are parallel to coordinate axes. This
|
|
* results in large increases in computational performance.
|
|
*
|
|
* @sa
|
|
* vtkConvexPointSet vtkHexahedron vtkPyramid vtkTetra vtkWedge
|
|
*/
|
|
|
|
#ifndef vtkVoxel_h
|
|
#define vtkVoxel_h
|
|
|
|
#include "vtkCell3D.h"
|
|
#include "vtkCommonDataModelModule.h" // For export macro
|
|
|
|
class vtkLine;
|
|
class vtkPixel;
|
|
class vtkIncrementalPointLocator;
|
|
|
|
class VTKCOMMONDATAMODEL_EXPORT vtkVoxel : public vtkCell3D
|
|
{
|
|
public:
|
|
static vtkVoxel* New();
|
|
vtkTypeMacro(vtkVoxel, vtkCell3D);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
|
|
///@{
|
|
/**
|
|
* See vtkCell3D API for description of these methods.
|
|
* @warning Face points of vtkVoxel are not sorted properly.
|
|
* {pts[0], pts[1], pts[3], pts[2]} forms consecutive points of one face.
|
|
*/
|
|
void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override;
|
|
vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override;
|
|
void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override;
|
|
vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faces) override;
|
|
vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edges) override;
|
|
vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faces) override;
|
|
vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override;
|
|
double* GetParametricCoords() override;
|
|
bool GetCentroid(double centroid[3]) const override;
|
|
bool IsInsideOut() override;
|
|
///@}
|
|
|
|
/**
|
|
* Computes exact bounding sphere of this voxel.
|
|
*/
|
|
double ComputeBoundingSphere(double center[3]) const override;
|
|
|
|
/**
|
|
* static constexpr handle on the number of points.
|
|
*/
|
|
static constexpr vtkIdType NumberOfPoints = 8;
|
|
|
|
/**
|
|
* static contexpr handle on the number of faces.
|
|
*/
|
|
static constexpr vtkIdType NumberOfEdges = 12;
|
|
|
|
/**
|
|
* static contexpr handle on the number of edges.
|
|
*/
|
|
static constexpr vtkIdType NumberOfFaces = 6;
|
|
|
|
/**
|
|
* static contexpr handle on the maximum face size. It can also be used
|
|
* to know the number of faces adjacent to one face.
|
|
*/
|
|
static constexpr vtkIdType MaximumFaceSize = 4;
|
|
|
|
/**
|
|
* static constexpr handle on the maximum valence of this cell.
|
|
* The valence of a vertex is the number of incident edges (or equivalently faces)
|
|
* to this vertex. It is also equal to the size of a one ring neighborhood of a vertex.
|
|
*/
|
|
static constexpr vtkIdType MaximumValence = 3;
|
|
|
|
///@{
|
|
/**
|
|
* See the vtkCell API for descriptions of these methods.
|
|
*/
|
|
int GetCellType() override { return VTK_VOXEL; }
|
|
int GetCellDimension() override { return 3; }
|
|
int GetNumberOfEdges() override { return 12; }
|
|
int GetNumberOfFaces() override { return 6; }
|
|
vtkCell* GetEdge(int edgeId) override;
|
|
vtkCell* GetFace(int faceId) override;
|
|
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
|
|
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
|
|
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
|
|
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
|
|
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
|
|
double& dist2, double weights[]) override;
|
|
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
|
|
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
|
|
double pcoords[3], int& subId) override;
|
|
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
|
|
void Derivatives(
|
|
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
|
|
///@}
|
|
|
|
/**
|
|
* Inflates voxel by moving every faces by dist. Since normals are not
|
|
* ambiguous for degenerate voxels, degenerate voxels are inflated correctly.
|
|
* For example, inflating a voxel collapsed to a single point will produce a
|
|
* voxel of width 2 * dist.
|
|
*
|
|
* \return 1
|
|
*/
|
|
int Inflate(double dist) override;
|
|
|
|
static void InterpolationDerivs(const double pcoords[3], double derivs[24]);
|
|
///@{
|
|
/**
|
|
* Compute the interpolation functions/derivatives
|
|
* (aka shape functions/derivatives)
|
|
*/
|
|
void InterpolateFunctions(const double pcoords[3], double weights[8]) override
|
|
{
|
|
vtkVoxel::InterpolationFunctions(pcoords, weights);
|
|
}
|
|
void InterpolateDerivs(const double pcoords[3], double derivs[24]) override
|
|
{
|
|
vtkVoxel::InterpolationDerivs(pcoords, derivs);
|
|
}
|
|
///@}
|
|
|
|
/**
|
|
* Compute the interpolation functions.
|
|
* This static method is for convenience. Use the member function
|
|
* if you already have an instance of a voxel.
|
|
*/
|
|
static void InterpolationFunctions(const double pcoords[3], double weights[8]);
|
|
|
|
/**
|
|
* Return the case table for table-based isocontouring (aka marching cubes
|
|
* style implementations). A linear 3D cell with N vertices will have 2**N
|
|
* cases. The returned case array lists three edges in order to produce one
|
|
* output triangle which may be repeated to generate multiple triangles. The
|
|
* list of cases terminates with a -1 entry.
|
|
*/
|
|
static int* GetTriangleCases(int caseId);
|
|
|
|
///@{
|
|
/**
|
|
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
|
|
* Ids are related to the cell, not to the dataset.
|
|
*
|
|
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
|
|
* This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids
|
|
* can be used as inputs in algorithms such as vtkPolygon::ComputeNormal.
|
|
*/
|
|
static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2);
|
|
static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(4);
|
|
///@}
|
|
|
|
/**
|
|
* Static method version of GetEdgeToAdjacentFaces.
|
|
*/
|
|
static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2);
|
|
|
|
/**
|
|
* Static method version of GetFaceToAdjacentFaces.
|
|
*/
|
|
static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(4);
|
|
|
|
/**
|
|
* Static method version of GetPointToIncidentEdgesArray.
|
|
*/
|
|
static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3);
|
|
|
|
/**
|
|
* Static method version of GetPointToIncidentFacesArray.
|
|
*/
|
|
static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3);
|
|
|
|
/**
|
|
* Static method version of GetPointToOneRingPoints.
|
|
*/
|
|
static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3);
|
|
|
|
/**
|
|
* Static method version of GetCentroid.
|
|
*/
|
|
static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]);
|
|
|
|
protected:
|
|
vtkVoxel();
|
|
~vtkVoxel() override;
|
|
|
|
private:
|
|
vtkVoxel(const vtkVoxel&) = delete;
|
|
void operator=(const vtkVoxel&) = delete;
|
|
|
|
vtkLine* Line;
|
|
vtkPixel* Pixel;
|
|
};
|
|
|
|
#endif
|