comac_desk_app/ThirdpartyLibs/Libs/windows-x86_64/vtk/include/vtkPixel.h

138 lines
4.9 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkPixel.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkPixel
* @brief a cell that represents an orthogonal quadrilateral
*
* vtkPixel is a concrete implementation of vtkCell to represent a 2D
* orthogonal quadrilateral. Unlike vtkQuad, the corners are at right angles,
* and aligned along x-y-z coordinate axes leading to large increases in
* computational efficiency.
*/
#ifndef vtkPixel_h
#define vtkPixel_h
#include "vtkCell.h"
#include "vtkCommonDataModelModule.h" // For export macro
class vtkLine;
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkPixel : public vtkCell
{
public:
static vtkPixel* New();
vtkTypeMacro(vtkPixel, vtkCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
///@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() override { return VTK_PIXEL; }
int GetCellDimension() override { return 2; }
int GetNumberOfEdges() override { return 4; }
int GetNumberOfFaces() override { return 0; }
vtkCell* GetEdge(int edgeId) override;
vtkCell* GetFace(int) override { return nullptr; }
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
///@}
/**
* Inflates this pixel by a distance of dist by moving the edges of the pixel
* by that distance. Since a pixel lies in 3D, the degenerate case where the
* pixel is homogeneous to a line are discarted because of normal direction
* ambiguity. Hence, if you shrink a 2D pixel so it loses thickness in one
* dimension. inflating it back to its previous form is impossible.
*
* A degenerate pixel of dimension 1 is inflated the same way a segment would be
* inflated. A degenerate pixel of dimension 0 is untouched.
*
* \return 1
*/
int Inflate(double dist) override;
/**
* Computes exact bounding sphere of this pixel.
*/
double ComputeBoundingSphere(double center[3]) const override;
/**
* Return the center of the triangle in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
static void InterpolationFunctions(const double pcoords[3], double weights[4]);
static void InterpolationDerivs(const double pcoords[3], double derivs[8]);
///@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[4]) override
{
vtkPixel::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[8]) override
{
vtkPixel::InterpolationDerivs(pcoords, derivs);
}
///@}
/**
* vtkPixel's normal cannot be computed using vtkPolygon::ComputeNormal because
* its points are not sorted such that circulating on them forms the pixel.
* This is a convenient method so one can compute normals on a pixel.
*/
int ComputeNormal(double n[3]);
protected:
vtkPixel();
~vtkPixel() override;
vtkLine* Line;
private:
vtkPixel(const vtkPixel&) = delete;
void operator=(const vtkPixel&) = delete;
};
//----------------------------------------------------------------------------
inline int vtkPixel::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = 0.5;
pcoords[2] = 0.0;
return 0;
}
#endif