comac_desk_app/ThirdpartyLibs/Libs/windows-x86_64/vtk/include/vtkDescriptiveStatistics.h

276 lines
11 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkDescriptiveStatistics.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2010 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
/**
* @class vtkDescriptiveStatistics
* @brief A class for univariate descriptive statistics
*
*
* Given a selection of columns of interest in an input data table, this
* class provides the following functionalities, depending on the chosen
* execution options:
* * Learn: calculate extremal values, sample mean, and M2, M3, and M4 aggregates
* (cf. P. Pebay, Formulas for robust, one-pass parallel computation of covariances
* and Arbitrary-Order Statistical Moments, Sandia Report SAND2008-6212, Sep 2008,
* http://infoserve.sandia.gov/sand_doc/2008/086212.pdf for details)
* * Derive: calculate unbiased variance estimator, standard deviation estimator,
* two skewness estimators, and two kurtosis excess estimators.
* * Assess: given an input data set, a reference value and a non-negative deviation,
* mark each datum with corresponding relative deviation (1-dimensional Mahlanobis
* distance). If the deviation is zero, then mark each datum which are equal to the
* reference value with 0, and all others with 1. By default, the reference value
* and the deviation are, respectively, the mean and the standard deviation of the
* input model.
* * Test: calculate Jarque-Bera statistic and, if VTK to R interface is available,
* retrieve corresponding p-value for normality testing.
*
* Among the derived statistics, the variance, the standard deviation, the skewness
* and the kurtosis can be estimated in two ways: using the sample version of those
* statistics, or the population version. Specify whether a sample estimate or population
* estimate is done by setting `SampleEstimate`. By default, `SampleEstimate == true`, hence
* the sample version of the statistics is estimated,
* which produces unbiased estimators (except for the sample standard deviation).
* The sample estimate should be used for input that represent a subset of the whole
* population of study. On the other hand, when `SampleEstimate == false`, the population
* version of the statistics is estimated. If the input doesn't contain all the samples
* from the population of study, then a bias is induced (the variance is slightly bigger than it
* should be). One can read about Bessel's correction to understand better where this comes from.
* That being said, on very large data, the difference between the 2 estimation formulas
* becomes very low, so in those instances,
* either state of `SampleEstimate` should yield very similar results
* (see explicit formulas below).
*
* \verbatim
*
* The formulas used are as follows, writing \f( \bar{X} \f) the mean of \f( X \f) and \f( N \f)
* the number of samples:
* - Sample estimate:
* \f[
* Var{X} = s^2 = \frac{\sum_{k=1}^N \left(x_k - \bar{x}\right)^2 }{N - 1}
* \f]
* \f[
* Skew{X} = \frac{n}{(n - 1)(n - 2)}
* \frac{\sum_{k=1}^N \left(x_k - \bar{x}\right)^3 }{s^3}
* \f]
* \f[
* Kurt{X} = \frac{n(n + 1)}{(n - 1)(n - 2)(n - 3)}
* \frac{\sum_{k=1}^N \left(x_k - \bar{x}\right)^3 }{s^4}
* - 3 \frac{(n - 1)^2}{(n - 2)(n - 3)}
* \f]
* - Population estimate:
* \f[
* Var{X} = \sigma^2 = \frac{\sum_{k=1}^N \left(x_k - \bar{x}\right)^2 }{N}
* \f]
* \f[
* Skew{X} = \frac{1}{N}\frac{\sum_{k=1}^N \left(x_k - \bar{x}\right)^3 }{\sigma^3}
* \f]
* \f[
* Kurt{X} = \frac{1}{N}\frac{\sum_{k=1}^N \left(x_k - \bar{x}\right)^3 }{\sigma^4} - 3
* \f]
*
* \f(\sigma\f) is the population standard deviation, and \f(s\f) is the sample standard deviation.
* Note that the kurtosis is corrected so the kurtosis of a gaussian distribution should yield 0.
*
* In the instance where \f(\sigma = 0\f) or \f(s = 0\f), the skewness and kurtosis are undefined.
* Thus they output a `NaN`. Similarly, if there are no samples, then all derived statistics
* yield a `NaN`.
*
* \endverbatim
*
* @par Thanks:
* Thanks to Philippe Pebay and David Thompson from Sandia National Laboratories
* for implementing this class.
* Updated by Philippe Pebay, Kitware SAS 2012
*/
#ifndef vtkDescriptiveStatistics_h
#define vtkDescriptiveStatistics_h
#include "vtkDeprecation.h" // For VTK_DEPRECATED_IN_9_2_0
#include "vtkFiltersStatisticsModule.h" // For export macro
#include "vtkStatisticsAlgorithm.h"
class vtkMultiBlockDataSet;
class vtkStringArray;
class vtkTable;
class vtkVariant;
class vtkDoubleArray;
class VTKFILTERSSTATISTICS_EXPORT vtkDescriptiveStatistics : public vtkStatisticsAlgorithm
{
public:
vtkTypeMacro(vtkDescriptiveStatistics, vtkStatisticsAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
static vtkDescriptiveStatistics* New();
///@{
/**
* @warning THIS METHOD DOES NOTHING AND IS DEPRECATED.
*
* To compute an unbiased variance, please set `SampleEstimate` instead. When set to true,
* the sample variance is computed, which is unbiased.
*/
VTK_DEPRECATED_IN_9_2_0("Please use SetSampleEstimate instead")
virtual void SetUnbiasedVariance(vtkTypeBool);
VTK_DEPRECATED_IN_9_2_0("Please use GetSampleEstimate instead")
virtual vtkTypeBool GetUnbiasedVariance();
VTK_DEPRECATED_IN_9_2_0("Please use SetSampleEstimate instead")
virtual void UnbiasedVarianceOn();
VTK_DEPRECATED_IN_9_2_0("Please use SetSampleEstimate instead")
virtual void UnbiasedVarianceOff();
///@}
///@{
/**
* @warning THIS METHOD DOES NOTHING AND IS DEPRECATED.
*
* Skewness estimator is picked depending on the state of `SampleEstimate`.
*/
VTK_DEPRECATED_IN_9_2_0("Please use SetSampleEstimate instead")
virtual void SetG1Skewness(vtkTypeBool);
VTK_DEPRECATED_IN_9_2_0("Please use GetSampleEstimate instead")
virtual vtkTypeBool GetG1Skewness();
VTK_DEPRECATED_IN_9_2_0("Please use SetSampleEstimate instead")
virtual void G1SkewnessOn();
VTK_DEPRECATED_IN_9_2_0("Please use SetSampleEstimate instead")
virtual void G1SkewnessOff();
///@}
///@{
/**
* @warning THIS METHOD DOES NOTHING AND IS DEPRECATED.
*
* Kurtosis estimator is picked depending on the state of `SampleEstimate`.
*/
VTK_DEPRECATED_IN_9_2_0("Please use SetSampleEstimate instead")
virtual void SetG2Kurtosis(vtkTypeBool);
VTK_DEPRECATED_IN_9_2_0("Please use GetSampleEstimate instead")
virtual vtkTypeBool GetG2Kurtosis();
VTK_DEPRECATED_IN_9_2_0("Please use SetSampleEstimate instead")
virtual void G2KurtosisOn();
VTK_DEPRECATED_IN_9_2_0("Please use SetSampleEstimate instead")
virtual void G2KurtosisOff();
///@}
///@{
/**
* Getter / Setter on `SampleEstimate`. When turned on, descriptive statistics
* computed by this filter assume that the input data only holds a sample of the whole
* population of study. In effect, the sample variance, the sample standard deviation,
* the sample skewness and the sample kurtosis are estimated. When turned off, the population
* variance, the population standard deviation, the population skewness and the population
* kurtosis are estimated instead.
*
* In short, if the input data is a full description of the population being studied,
* `SampleEstimate` should be turned off. If the input data is a sample of the population being
* studied, then `SampleEstimate` should be turned on. By default, `SampleEstimate` is turned
* on, as it is the most likely case.
*
* Please see class description for a full description of the formulas.
*
* @note For large data, the difference between the population estimate and the sample
* estimate becomes thin, so this parameter becomes of less worry.
*/
vtkSetMacro(SampleEstimate, bool);
vtkGetMacro(SampleEstimate, bool);
vtkBooleanMacro(SampleEstimate, bool);
///@}
///@{
/**
* Set/get whether the deviations returned should be signed, or should
* only have their magnitude reported.
* The default is that signed deviations will be computed.
*/
vtkSetMacro(SignedDeviations, vtkTypeBool);
vtkGetMacro(SignedDeviations, vtkTypeBool);
vtkBooleanMacro(SignedDeviations, vtkTypeBool);
///@}
///@{
/**
* If there is a ghost array in the input, then ghosts matching `GhostsToSkip` mask
* will be skipped. It is set to 0xff by default (every ghosts types are skipped).
*
* @sa
* vtkDataSetAttributes
* vtkFieldData
* vtkPointData
* vtkCellData
*/
vtkSetMacro(GhostsToSkip, unsigned char);
vtkGetMacro(GhostsToSkip, unsigned char);
///@}
/**
* Given a collection of models, calculate aggregate model
*/
void Aggregate(vtkDataObjectCollection*, vtkMultiBlockDataSet*) override;
protected:
vtkDescriptiveStatistics();
~vtkDescriptiveStatistics() override;
/**
* Execute the calculations required by the Learn option, given some input Data
* NB: input parameters are unused.
*/
void Learn(vtkTable*, vtkTable*, vtkMultiBlockDataSet*) override;
/**
* Execute the calculations required by the Derive option.
*/
void Derive(vtkMultiBlockDataSet*) override;
/**
* Execute the calculations required by the Test option.
*/
void Test(vtkTable*, vtkMultiBlockDataSet*, vtkTable*) override;
/**
* Execute the calculations required by the Assess option.
*/
void Assess(vtkTable* inData, vtkMultiBlockDataSet* inMeta, vtkTable* outData) override
{
this->Superclass::Assess(inData, inMeta, outData, 1);
}
/**
* Calculate p-value. This will be overridden using the object factory with an
* R implementation if R is present.
*/
virtual vtkDoubleArray* CalculatePValues(vtkDoubleArray*);
/**
* Provide the appropriate assessment functor.
*/
void SelectAssessFunctor(vtkTable* outData, vtkDataObject* inMeta, vtkStringArray* rowNames,
AssessFunctor*& dfunc) override;
bool SampleEstimate;
vtkTypeBool SignedDeviations;
unsigned char GhostsToSkip;
private:
vtkDescriptiveStatistics(const vtkDescriptiveStatistics&) = delete;
void operator=(const vtkDescriptiveStatistics&) = delete;
};
#endif