comac_desk_app/ThirdpartyLibs/Libs/windows-x86_64/vtk/include/vtkVoxel.h

218 lines
7.6 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkVoxel.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkVoxel
* @brief a cell that represents a 3D orthogonal parallelepiped
*
* vtkVoxel is a concrete implementation of vtkCell to represent a 3D
* orthogonal parallelepiped. Unlike vtkHexahedron, vtkVoxel has interior
* angles of 90 degrees, and sides are parallel to coordinate axes. This
* results in large increases in computational performance.
*
* @sa
* vtkConvexPointSet vtkHexahedron vtkPyramid vtkTetra vtkWedge
*/
#ifndef vtkVoxel_h
#define vtkVoxel_h
#include "vtkCell3D.h"
#include "vtkCommonDataModelModule.h" // For export macro
class vtkLine;
class vtkPixel;
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkVoxel : public vtkCell3D
{
public:
static vtkVoxel* New();
vtkTypeMacro(vtkVoxel, vtkCell3D);
void PrintSelf(ostream& os, vtkIndent indent) override;
///@{
/**
* See vtkCell3D API for description of these methods.
* @warning Face points of vtkVoxel are not sorted properly.
* {pts[0], pts[1], pts[3], pts[2]} forms consecutive points of one face.
*/
void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override;
vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override;
void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override;
vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faces) override;
vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edges) override;
vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faces) override;
vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override;
double* GetParametricCoords() override;
bool GetCentroid(double centroid[3]) const override;
bool IsInsideOut() override;
///@}
/**
* Computes exact bounding sphere of this voxel.
*/
double ComputeBoundingSphere(double center[3]) const override;
/**
* static constexpr handle on the number of points.
*/
static constexpr vtkIdType NumberOfPoints = 8;
/**
* static contexpr handle on the number of faces.
*/
static constexpr vtkIdType NumberOfEdges = 12;
/**
* static contexpr handle on the number of edges.
*/
static constexpr vtkIdType NumberOfFaces = 6;
/**
* static contexpr handle on the maximum face size. It can also be used
* to know the number of faces adjacent to one face.
*/
static constexpr vtkIdType MaximumFaceSize = 4;
/**
* static constexpr handle on the maximum valence of this cell.
* The valence of a vertex is the number of incident edges (or equivalently faces)
* to this vertex. It is also equal to the size of a one ring neighborhood of a vertex.
*/
static constexpr vtkIdType MaximumValence = 3;
///@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() override { return VTK_VOXEL; }
int GetCellDimension() override { return 3; }
int GetNumberOfEdges() override { return 12; }
int GetNumberOfFaces() override { return 6; }
vtkCell* GetEdge(int edgeId) override;
vtkCell* GetFace(int faceId) override;
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
///@}
/**
* Inflates voxel by moving every faces by dist. Since normals are not
* ambiguous for degenerate voxels, degenerate voxels are inflated correctly.
* For example, inflating a voxel collapsed to a single point will produce a
* voxel of width 2 * dist.
*
* \return 1
*/
int Inflate(double dist) override;
static void InterpolationDerivs(const double pcoords[3], double derivs[24]);
///@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[8]) override
{
vtkVoxel::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[24]) override
{
vtkVoxel::InterpolationDerivs(pcoords, derivs);
}
///@}
/**
* Compute the interpolation functions.
* This static method is for convenience. Use the member function
* if you already have an instance of a voxel.
*/
static void InterpolationFunctions(const double pcoords[3], double weights[8]);
/**
* Return the case table for table-based isocontouring (aka marching cubes
* style implementations). A linear 3D cell with N vertices will have 2**N
* cases. The returned case array lists three edges in order to produce one
* output triangle which may be repeated to generate multiple triangles. The
* list of cases terminates with a -1 entry.
*/
static int* GetTriangleCases(int caseId);
///@{
/**
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
* Ids are related to the cell, not to the dataset.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids
* can be used as inputs in algorithms such as vtkPolygon::ComputeNormal.
*/
static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2);
static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(4);
///@}
/**
* Static method version of GetEdgeToAdjacentFaces.
*/
static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2);
/**
* Static method version of GetFaceToAdjacentFaces.
*/
static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(4);
/**
* Static method version of GetPointToIncidentEdgesArray.
*/
static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3);
/**
* Static method version of GetPointToIncidentFacesArray.
*/
static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3);
/**
* Static method version of GetPointToOneRingPoints.
*/
static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3);
/**
* Static method version of GetCentroid.
*/
static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]);
protected:
vtkVoxel();
~vtkVoxel() override;
private:
vtkVoxel(const vtkVoxel&) = delete;
void operator=(const vtkVoxel&) = delete;
vtkLine* Line;
vtkPixel* Pixel;
};
#endif