comac_desk_app/ThirdpartyLibs/Libs/windows-x86_64/vtk/include/vtkTriQuadraticPyramid.h

230 lines
8.5 KiB
C
Raw Normal View History

2024-11-21 11:50:43 +08:00
/*=========================================================================
Program: Visualization Toolkit
Module: vtkTriQuadraticPyramid.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkTriQuadraticPyramid
* @brief cell represents a parabolic, 19-node isoparametric pyramid
*
* vtkTriQuadraticPyramid is a concrete implementation of vtkNonLinearCell to
* represent a second order three-dimensional isoparametric 19-node pyramid.
* The interpolation is the standard finite element, tri-quadratic
* isoparametric shape function. The cell includes 5 corner nodes, 8 mid-edge nodes,
* 5 mid-face nodes, and 1 volumetric centroid node. The ordering of the nineteen points
* defining the cell is point ids (0-4, 5-12, 13-17, 18), where point ids 0-4 are the five
* corner vertices of the pyramid; followed by 8 mid-edge nodes (5-12); followed by
* 5 mid-face nodes (13-17), and the last node (19) is the volumetric centroid node.
* Note that these mid-edge nodes lie on the edges defined by (0, 1), (1, 2), (2, 3),
* (3, 0), (0, 4), (1, 4), (2, 4), (3, 4), respectively. The mid-face nodes lie on the
* faces defined by (first corner nodes id's, then mid-edge node id's):
* quadrilateral face: (0, 3, 2, 1, 8, 7, 6, 5), triangle face 1: (0, 1, 4, 5, 10, 9),
* triangle face 2: (1, 2, 4, 6, 11, 10), triangle face 3: (2, 3, 4, 7, 12, 11),
* triangle face 5: (3, 0, 4, 8, 9, 12). The last point lies in the center of the cell
* (0, 1, 2, 3, 4). The parametric location of vertex #4 is [0.5, 0.5, 1].
*
* @note It should be noted that the parametric coordinates that describe this cell
* are not distorted like in vtkPyramid and vtkQuadraticPyramid, which are a collapsed
* hexahedron. They are the actual uniform isoparametric coordinates, which are described
* in Browning's dissertation (see thanks section), but they are converted to [0, 1] space,
* and the nodes are rotated so that node-0 has x = 0, y = 0, while maintaining the CCW order.
*
* \verbatim
* Description of 19-node pyramid from bottom to top (based on the z-axis).
*
* base quadrilateral including mid-edge nodes and mid-face node:
* 3-- 7--2
* | |
* 8 13 6
* | |
* 0-- 5--1
*
* volumetric centroid node:
*
*
* 18
*
*
* mid-face nodes of triangular faces:
*
* 16
* / \
* 17 15
* \ /
* 14
*
* mid-edge nodes of triangular faces:
*
* 12--11
* | |
* 9--10
*
* top corner(apex):
*
*
* 4
*
*
* \endverbatim
*
* @sa
* vtkQuadraticEdge vtkBiQuadraticTriangle vtkQuadraticTetra
* vtkQuadraticHexahedron vtkBiQuadraticQuad vtkQuadraticWedge
*
* @par Thanks:
* The shape functions and derivatives could be implemented thanks to
* the doctoral dissertation: R.S. Browning. A Second-Order 19-Node Pyramid
* Finite Element Suitable for Lumped Mass Explicit Dynamic methods in
* Nonlinear Solid Mechanics, University of Alabama at Birmingham.
*/
#ifndef vtkTriQuadraticPyramid_h
#define vtkTriQuadraticPyramid_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNew.h" // initialize cells that are used for the implementation
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkBiQuadraticQuad;
class vtkBiQuadraticTriangle;
class vtkTetra;
class vtkPyramid;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkTriQuadraticPyramid : public vtkNonLinearCell
{
public:
static vtkTriQuadraticPyramid* New();
vtkTypeMacro(vtkTriQuadraticPyramid, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
///@{
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() override { return VTK_TRIQUADRATIC_PYRAMID; }
int GetCellDimension() override { return 3; }
int GetNumberOfEdges() override { return 8; }
int GetNumberOfFaces() override { return 5; }
vtkCell* GetEdge(int edgeId) override;
vtkCell* GetFace(int faceId) override;
///@}
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
/**
* Clip this quadratic triangle using scalar value provided. Like
* contouring, except that it cuts the triangle to produce linear
* triangles.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* tets, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Return the center of the tri-quadratic pyramid in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
/**
* Return the distance of the parametric coordinate provided to the
* cell. If inside the cell, a distance of zero is returned.
*/
double GetParametricDistance(const double pcoords[3]) override;
static void InterpolationFunctions(const double pcoords[3], double weights[19]);
static void InterpolationDerivs(const double pcoords[3], double derivs[57]);
///@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[19]) override
{
vtkTriQuadraticPyramid::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[57]) override
{
vtkTriQuadraticPyramid::InterpolationDerivs(pcoords, derivs);
}
///@}
/**
* Given parametric coordinates compute inverse Jacobian transformation
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
* function derivatives.
*/
void JacobianInverse(const double pcoords[3], double** inverse, double derivs[57]);
///@{
/**
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
* Ids are related to the cell, not to the dataset.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints.
*/
static const vtkIdType* GetEdgeArray(vtkIdType edgeId);
static const vtkIdType* GetFaceArray(vtkIdType faceId);
///@}
protected:
vtkTriQuadraticPyramid();
~vtkTriQuadraticPyramid() override;
vtkNew<vtkQuadraticEdge> Edge;
vtkNew<vtkBiQuadraticTriangle> TriangleFace;
vtkNew<vtkBiQuadraticTriangle> TriangleFace2;
vtkNew<vtkBiQuadraticQuad> QuadFace;
vtkNew<vtkTetra> Tetra;
vtkNew<vtkPyramid> Pyramid;
vtkNew<vtkDoubleArray> Scalars; // used to avoid New/Delete in contouring/clipping
private:
vtkTriQuadraticPyramid(const vtkTriQuadraticPyramid&) = delete;
void operator=(const vtkTriQuadraticPyramid&) = delete;
};
//----------------------------------------------------------------------------
// Return the center of the tri-quadratic pyramid in parametric coordinates.
//
inline int vtkTriQuadraticPyramid::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = 0.5;
// This is different compared to the last node, because the last node
// is the centroid of the nodes 0-4, and not the centroid of the nodes 0-17.
// So pcoords[2] is defined as followed to pass the requirement of TestGenericCell
pcoords[2] = 283.0 / 456.0;
return 0;
}
#endif