159 lines
4.8 KiB
C
159 lines
4.8 KiB
C
|
|
/*=========================================================================
|
||
|
|
|
||
|
|
Program: Visualization Toolkit
|
||
|
|
Module: vtkPointSource.h
|
||
|
|
|
||
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
||
|
|
All rights reserved.
|
||
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
||
|
|
|
||
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
||
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
|
PURPOSE. See the above copyright notice for more information.
|
||
|
|
|
||
|
|
=========================================================================*/
|
||
|
|
/**
|
||
|
|
* @class vtkPointSource
|
||
|
|
* @brief create a random cloud of points
|
||
|
|
*
|
||
|
|
* vtkPointSource is a source object that creates a user-specified number of
|
||
|
|
* points within a specified radius about a specified center point. By
|
||
|
|
* default the location of the points is random within the sphere. It is also
|
||
|
|
* possible to generate random points only on the surface of the sphere; or a
|
||
|
|
* exponential distribution weighted towards the center point. The output
|
||
|
|
* PolyData has the specified number of points and a single cell - a
|
||
|
|
* vtkPolyVertex cell referencing all of the points.
|
||
|
|
*
|
||
|
|
* @note
|
||
|
|
* If Lambda set to zero, a uniform distribution is used. Negative lambda
|
||
|
|
* values are allowed, but the distribution function becomes inverted.
|
||
|
|
*
|
||
|
|
* @note
|
||
|
|
* If you desire to create complex point clouds (e.g., stellar distributions)
|
||
|
|
* then use multiple point sources and then append them together using the
|
||
|
|
* an append filter (e.g., vtkAppendPolyData).
|
||
|
|
*
|
||
|
|
* @sa
|
||
|
|
* vtkAppendPolyData
|
||
|
|
*/
|
||
|
|
|
||
|
|
#ifndef vtkPointSource_h
|
||
|
|
#define vtkPointSource_h
|
||
|
|
|
||
|
|
#include "vtkFiltersSourcesModule.h" // For export macro
|
||
|
|
#include "vtkPolyDataAlgorithm.h"
|
||
|
|
|
||
|
|
#define VTK_POINT_SHELL 0
|
||
|
|
#define VTK_POINT_UNIFORM 1
|
||
|
|
#define VTK_POINT_EXPONENTIAL 2
|
||
|
|
|
||
|
|
class vtkRandomSequence;
|
||
|
|
|
||
|
|
class VTKFILTERSSOURCES_EXPORT vtkPointSource : public vtkPolyDataAlgorithm
|
||
|
|
{
|
||
|
|
public:
|
||
|
|
///@{
|
||
|
|
/**
|
||
|
|
* Standard methods for instantiation, type information, and printing.
|
||
|
|
*/
|
||
|
|
static vtkPointSource* New();
|
||
|
|
vtkTypeMacro(vtkPointSource, vtkPolyDataAlgorithm);
|
||
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
||
|
|
///@}
|
||
|
|
|
||
|
|
///@{
|
||
|
|
/**
|
||
|
|
* Set the number of points to generate.
|
||
|
|
*/
|
||
|
|
vtkSetClampMacro(NumberOfPoints, vtkIdType, 1, VTK_ID_MAX);
|
||
|
|
vtkGetMacro(NumberOfPoints, vtkIdType);
|
||
|
|
///@}
|
||
|
|
|
||
|
|
///@{
|
||
|
|
/**
|
||
|
|
* Set the center of the point cloud.
|
||
|
|
*/
|
||
|
|
vtkSetVector3Macro(Center, double);
|
||
|
|
vtkGetVectorMacro(Center, double, 3);
|
||
|
|
///@}
|
||
|
|
|
||
|
|
///@{
|
||
|
|
/**
|
||
|
|
* Set the radius of the point cloud. If you are
|
||
|
|
* generating a Gaussian distribution, then this is
|
||
|
|
* the standard deviation for each of x, y, and z.
|
||
|
|
*/
|
||
|
|
vtkSetClampMacro(Radius, double, 0.0, VTK_DOUBLE_MAX);
|
||
|
|
vtkGetMacro(Radius, double);
|
||
|
|
///@}
|
||
|
|
|
||
|
|
///@{
|
||
|
|
/**
|
||
|
|
* Specify the point distribution to use. The default is a uniform
|
||
|
|
* distribution. The shell distribution produces random points on the
|
||
|
|
* surface of the sphere Radius=constant, no points in the interior. The
|
||
|
|
* exponential distribution creates more points towards the center point
|
||
|
|
* weighted by the exponential function.
|
||
|
|
*/
|
||
|
|
vtkSetClampMacro(Distribution, int, VTK_POINT_SHELL, VTK_POINT_EXPONENTIAL);
|
||
|
|
void SetDistributionToShell() { this->SetDistribution(VTK_POINT_SHELL); }
|
||
|
|
void SetDistributionToUniform() { this->SetDistribution(VTK_POINT_UNIFORM); }
|
||
|
|
void SetDistributionToExponential() { this->SetDistribution(VTK_POINT_EXPONENTIAL); }
|
||
|
|
vtkGetMacro(Distribution, int);
|
||
|
|
///@}
|
||
|
|
|
||
|
|
///@{
|
||
|
|
/**
|
||
|
|
* If the distribution is set to exponential, then Lambda is used to
|
||
|
|
* scale the exponential distribution defined by
|
||
|
|
* f(x) = Lambda*exp(-Lambda*radius) where the radius is the distance
|
||
|
|
* from the Center of the point source. By default, the value of Lambda
|
||
|
|
* is Lambda=1.0.
|
||
|
|
*/
|
||
|
|
vtkSetMacro(Lambda, double);
|
||
|
|
vtkGetMacro(Lambda, double);
|
||
|
|
///@}
|
||
|
|
|
||
|
|
///@{
|
||
|
|
/**
|
||
|
|
* Set/get the desired precision for the output points.
|
||
|
|
* vtkAlgorithm::SINGLE_PRECISION - Output single-precision floating point.
|
||
|
|
* vtkAlgorithm::DOUBLE_PRECISION - Output double-precision floating point.
|
||
|
|
*/
|
||
|
|
vtkSetMacro(OutputPointsPrecision, int);
|
||
|
|
vtkGetMacro(OutputPointsPrecision, int);
|
||
|
|
///@}
|
||
|
|
|
||
|
|
///@{
|
||
|
|
/**
|
||
|
|
* Set/Get a random sequence generator.
|
||
|
|
* By default, the generator in vtkMath is used to maintain backwards
|
||
|
|
* compatibility.
|
||
|
|
*/
|
||
|
|
virtual void SetRandomSequence(vtkRandomSequence* randomSequence);
|
||
|
|
vtkGetObjectMacro(RandomSequence, vtkRandomSequence);
|
||
|
|
///@}
|
||
|
|
|
||
|
|
protected:
|
||
|
|
vtkPointSource(vtkIdType numPts = 10);
|
||
|
|
~vtkPointSource() override;
|
||
|
|
|
||
|
|
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
|
||
|
|
|
||
|
|
double Random();
|
||
|
|
|
||
|
|
vtkIdType NumberOfPoints;
|
||
|
|
double Center[3];
|
||
|
|
double Radius;
|
||
|
|
int Distribution;
|
||
|
|
double Lambda;
|
||
|
|
int OutputPointsPrecision;
|
||
|
|
vtkRandomSequence* RandomSequence;
|
||
|
|
|
||
|
|
private:
|
||
|
|
vtkPointSource(const vtkPointSource&) = delete;
|
||
|
|
void operator=(const vtkPointSource&) = delete;
|
||
|
|
};
|
||
|
|
|
||
|
|
#endif
|