comac_desk_app/ThirdpartyLibs/Libs/windows-x86_64/vtk/include/vtkMathUtilities.h

144 lines
3.8 KiB
C
Raw Permalink Normal View History

2024-11-21 11:50:43 +08:00
/*=========================================================================
Program: Visualization Toolkit
Module: vtkMathUtilities.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkMathUtilities
* @brief templated utility math functions intended for
* internal use in tests etc.
*
*
* Provide a set of inline, lightweight templated math utility functions.
* The initial motivation is to provide a few lightweight functions to help in
* testing and internal implementation files.
*/
#ifndef vtkMathUtilities_h
#define vtkMathUtilities_h
#include <cmath>
#include <limits>
#include <tuple>
#include <type_traits>
namespace vtkMathUtilities
{
/**
* Perform a fuzzy compare of floats/doubles, specify the allowed tolerance
*/
template <class A>
bool FuzzyCompare(A a, A b, A epsilon = std::numeric_limits<A>::epsilon())
{
return fabs(a - b) < epsilon;
}
/**
* Performs safe division that catches overflow and underflow.
*/
template <class A>
A SafeDivision(A a, A b)
{
// Avoid overflow
if ((b < static_cast<A>(1)) && (a > b * std::numeric_limits<A>::max()))
{
return std::numeric_limits<A>::max();
}
// Avoid underflow
if ((a == static_cast<A>(0)) ||
((b > static_cast<A>(1)) && (a < b * std::numeric_limits<A>::min())))
{
return static_cast<A>(0);
}
// safe to do the division
return (a / b);
}
/**
* A slightly different fuzzy comparator that checks if two values are
* "nearly" equal based on Knuth, "The Art of Computer Programming (vol II)"
*/
template <class A>
bool NearlyEqual(A a, A b, A tol = std::numeric_limits<A>::epsilon())
{
A absdiff = fabs(a - b);
A d1 = vtkMathUtilities::SafeDivision<A>(absdiff, fabs(a));
A d2 = vtkMathUtilities::SafeDivision<A>(absdiff, fabs(b));
return ((d1 <= tol) || (d2 <= tol));
}
/**
* Update an existing min - max range with a new prospective value. If the
* value is non NaN then the appropriate range comparisons are made and
* updated, otherwise the original min - max values are set.
*
* Examples:
*
* No change:
* UpdateRange(-100, 100, 20) -> (-100, 100)
*
* Update min:
* UpdateRange(-100, 100, -200) -> (-200, 100)
*
* Update max:
* UpdateRange(-100, 100, 200) -> (-100, 200)
*
* Input min and max are inverted creating an invalid range so a new range
* with the specified value is set:
* UpdateRange(100, -100, 20) -> (20, 20)
*
* Input value is NaN so the original range is set
* UpdateRange(-100, 100, NaN) -> (-100, 100)
*/
template <class A>
void UpdateRangeImpl(A& min0, A& max0, const A& value)
{
// need temporaries to handle const/non const ref mismatch
if (value < min0)
{
min0 = value;
max0 = max0 < value ? value : max0;
}
else if (value > max0)
{
min0 = min0 > value ? value : min0;
max0 = value;
}
}
template <class A> // Non floating point implementation not caring about NaN
void UpdateRange(A& min0, A& max0, const A& value,
typename std::enable_if<!std::is_floating_point<A>::value>::type* = 0)
{
UpdateRangeImpl<A>(min0, max0, value);
}
template <class A> // Floating point implementation specifically considering NaN
void UpdateRange(A& min0, A& max0, const A& value,
typename std::enable_if<std::is_floating_point<A>::value>::type* = 0)
{
if (!std::isnan(value))
{
UpdateRangeImpl<A>(min0, max0, value);
}
}
} // End vtkMathUtilities namespace.
#endif // vtkMathUtilities_h
// VTK-HeaderTest-Exclude: vtkMathUtilities.h